FRESH AIR HANDLING UNIT (FAHU)

FRESH AIR HANDLING UNIT

FAHU = Fresh Air Handling Unit

- Purpose: Treats **fresh outside air** before supplying it to AHUs or directly to spaces.
- Common in commercial buildings, malls, hospitals, hotels to ensure indoor air quality (IAQ) and meet ASHRAE/Local ventilation codes.
- **Difference from AHU**: FAHU only handles fresh air, while AHU usually mixes return air with fresh air.
- **Link with Chilled Water System**: Most FAHUs have cooling coils supplied by chilled water to control temperature & humidity.

TYPES OF FAHU

Based on Air Handling Design

1. Standard FAHU

- o Supplies treated fresh air only, without return air connection.
- o Cooling coil + filters + fan.
- o Common in commercial buildings.

2. FAHU with Heat Recovery

- Uses Rotary Heat Wheel, Plate Heat Exchanger, or Run-around Coil to recover energy from exhaust air.
- o Reduces cooling load on coils.
- o Required by ASHRAE 90.1 for certain applications.

3. DOAS (Dedicated Outdoor Air System)

- o FAHU designed to supply 100% outdoor air to handle ventilation load only.
- o Works alongside fan coil units or AHUs that handle sensible cooling.

4. Packaged FAHU

- o Integrated DX cooling coil with compressors inside (no chilled water needed).
- o Used where chilled water supply is not available.

Based on Cooling Method

1. Chilled Water FAHU

- o Uses building's chilled water system.
- Most common in UAE.

2. DX FAHU (Direct Expansion)

- o Uses refrigerant coils and compressor (like a split AC system).
- o Used in standalone applications or smaller setups.

Based on Installation Location

1. Indoor Type

- o Installed inside plant rooms.
- o Requires ducted connection to outside for intake and to supply duct.

2. Outdoor Type

- Weatherproof casing.
- o Installed on rooftops or outdoor pads.

Based on Application

- 1. **Standard Commercial FAHU** Offices, malls, hotels.
- 2. Hospital/Healthcare FAHU With HEPA filters, UV lights, humidifiers, pressure control.
- 3. **Industrial FAHU** With chemical filters, activated carbon, explosion-proof motors.

SECTIONS INSIDE A TYPICAL FAHU

From inlet to outlet:

1. Inlet Section

- o Weather louver with bird mesh (aluminum or G.I. powder coated)
- Motorized fresh air damper (with actuator) for control
- Pre-filter or G4 filter (removes dust/large particles)

2. Filter Section

- o **Pre-Filter**: G4/EU4, washable
- o Fine Filter: F7–F9, cartridge type
- o **HEPA Filter** (if hospital/cleanroom) ≥99.97% efficiency
- Access doors for filter replacement with proper gaskets to avoid bypass air
- 3. Heat Recovery Section (as per requirement)
 - o Rotary Heat Wheel (enthalpy wheel) for energy recovery
 - o Sensible-only wheel or enthalpy wheel depending on design
 - Purge sector to prevent cross-contamination
 - o Insulated access panel for maintenance

4. Cooling Coil Section

- o Chilled water coil (copper tube + aluminum fins, epoxy coated if near sea)
- o Condensate drain pan (SS 304, slope ≥ 1% toward drain)
- o Thermostatic control via 2-way or 3-way motorized control valve
- 5. **Heating Coil Section** (as per requirement)
 - o Electric heater or hot water coil (rare in UAE, more in cold climates)
- 6. Humidifier Section (if required)
 - o Steam grid or spray type for humidity control (common in hospitals/labs)

7. Fan Section

- o Centrifugal or plug fan
- o Motor mounted inside or outside air stream
- VFD-controlled for airflow modulation
- o Fan curve selection must match system external static pressure

8. Discharge Section

- o Flexible connections to ductwork
- Anti-vibration mounts at FAHU base

Materials & Construction Standards

- Casing: Double-skin panels, 25–50mm polyurethane or rock wool insulation
- **Panels**: G.I. sheet with powder coating or aluminum
- Frame: Extruded aluminum profile with nylon corners
- **Drain Pan**: SS 304 or 316, insulated externally
- Filters: As per EN 779 / ISO 16890
- Fans: AMCA-certifiedCoils: AHRI-certified

Reference Standards

- ASHRAE 62.1 Ventilation for Acceptable IAQ
- ASHRAE 90.1 Energy Standards (heat recovery requirements)
- **DW 143** Air Handling Units Specification (UK)
- **SMACNA** Ductwork & air system installation
- AHRI 430/440 Coils & fan certification

Site Installation Points

FAHU installed on concrete housekeeping pad with vibration isolators

- Sufficient clearance for filter removal, coil pulling, fan maintenance
- Inlet louvers away from exhaust outlets to prevent short-circuiting of air
- Proper sealing of all panels to avoid air leakage
- Flexible duct connection to isolate vibration transfer
- Drain pan slope & proper trap installation for condensate drain
- Heat wheel purge section orientation per manufacturer

FAHU WORKING PRINCIPLE (STEP-BY-STEP AIRFLOW)

1. Air Intake

- Fresh outdoor air enters through **weather louvers** → stops rain, birds, and debris.
- Passes through a motorized damper (controlled by BMS or manual setting) to regulate air quantity.

2. Filtration

- Pre-filter (G4/EU4) removes large dust particles, protecting downstream components.
- Fine filter (F7–F9) removes finer particulates for IAQ compliance.
- **HEPA filter** used in hospitals/cleanrooms for >99.97% filtration of 0.3µm particles.

3. Heat Recovery (if installed)

- If a heat wheel or plate heat exchanger is present:
 - o Exhaust air from the building passes through one side.
 - o Fresh air passes through the other side.
 - o Sensible or total energy is transferred → reduces cooling/heating load.
- Purge section prevents contaminated exhaust air from mixing with fresh supply.

4. Cooling (and Dehumidification)

- Fresh air passes over **chilled water coil** (or DX coil).
- Cooling lowers temperature, condensation removes excess moisture.
- Water collected in **SS drain pan** flows to drain trap.

5. Heating (if required)

• In cold climates or special processes, an **electric heater** or **hot water coil** reheats the air after cooling to maintain comfort or process needs.

6. Humidification (optional)

• If air is too dry (common in hospitals, labs), a **humidifier section** adds moisture (steam or spray type).

7. Fan Section

- A centrifugal or plug fan **pulls air through all sections** and pushes it into the ducting system.
- Fan speed may be **fixed** or controlled by a **VFD** to match demand.

8. Discharge to Supply Duct

- Treated, filtered, temperature- and humidity-controlled air is supplied to:
 - o **AHUs** (which mix it with return air before distribution)
 - o Or directly into occupied spaces if designed as a DOAS system.

In **short**, the FAHU's working principle is:

"Pull in outdoor air \rightarrow filter \rightarrow recover energy \rightarrow cool/heat \rightarrow control humidity \rightarrow push into building in controlled quantity & quality."

FAHU CONTROL STRATEGY

Main Objectives of FAHU Controls

- Maintain indoor air quality (CO₂ levels, contaminants)
- Maintain supply air temperature within design limits
- Avoid energy wastage using heat recovery and demand control
- Integrate smoothly with AHUs / FCUs / DOAS and the building's HVAC system
- Provide alarms & protection for safe operation

Key Control Inputs

FAHU is controlled by a combination of **sensors**:

- CO₂ sensors in occupied zones or return ducts → adjust outdoor air quantity
- **Temperature sensors** at coil inlet/outlet and supply air discharge
- **Humidity sensors** (if humidification/dehumidification is used)
- Differential pressure switches for filter status
- Static pressure sensors in supply duct → for VFD control
- Limit switches on access doors for fan safety

Control Components

- Motorized Fresh Air Damper (MAD) modulates to control ventilation air volume
- Chilled Water Control Valve (2-way or 3-way) modulates cooling coil capacity
- Heat Recovery Wheel Motor/VFD varies wheel speed based on temp difference
- Supply Fan VFD adjusts speed to maintain duct static pressure or airflow
- **Humidifier Control** modulates steam/spray based on RH setpoint

Typical FAHU Control Sequence of Operation

Step-by-step logic (example for chilled water FAHU with heat wheel):

Startup

- 1. **BMS sends start command** → supply fan starts via VFD at low speed.
- 2. Fresh air damper **opens to minimum position** (set by design or code).
- 3. If **heat wheel present**, starts rotating at preset speed.
- 4. System checks safety interlocks (filters clean, doors closed, drain pan ok).

Normal Operation

- Supply Air Temp Control:
 - o Discharge air temperature sensor sends signal to BMS.
 - o BMS modulates **chilled water valve** to maintain setpoint (e.g., 18–20°C).

- Ventilation Demand Control (if enabled):
 - o CO₂ sensor detects ppm level in space/return air.
 - Damper opens more if CO₂ high; closes toward minimum if low occupancy.
- Heat Wheel Control:
 - o If outdoor air temp close to indoor temp, wheel slows/stops to save power.
 - In hot climate → slows when no meaningful energy recovery possible.

Humidity Control (if present)

- **Dehumidification** happens naturally during cooling (condensation).
- **Humidification** system starts if RH falls below setpoint.

VFD Fan Control

- Maintains constant duct static pressure (common in VAV systems).
- Reduces speed during low demand → energy savings.

Alarms & Safeties

- **High filter DP alarm** → triggers maintenance request.
- Fan overload trip → shuts unit down.
- **Clogged condensate drain** → trips system to prevent water carryover.
- Door open interlock → shuts fan for safety.

Energy Efficiency Features

- **Economizer mode** (in mild climates): Damper opens fully if outdoor air temp/humidity suitable for free cooling.
- Night purge mode: Flushes building with outdoor air during unoccupied periods.
- Heat wheel modulation: Slows or stops to reduce unnecessary energy use.

TESTING & COMMISSIONING (T&C) PROCEDURE FOR A FAHU

Pre-Commissioning Checks

(Before power-up and starting the FAHU)

Mechanical Checks

Location & Installation

- o FAHU installed as per approved drawings.
- o Housekeeping pad/vibration isolators in place.
- Proper clearances for maintenance access.

Casing & Panels

o All panels closed, gaskets intact, no air leakage.

Drainage

- SS 304 drain pan sloped (≥1%) toward drain outlet.
- o Drain trap installed with correct height to prevent air bypass.

Filters

o All filters installed, clean, and properly sealed (no bypass gaps).

Coils

- o Cooling coil fins straight, clean, free from damage.
- chilled water connections tight, valves functional.

Fans

- o Belt tension correct (if belt-driven), guards in place.
- o Fan wheel rotates freely without rubbing.

Dampers

Fresh air dampers/actuators installed, moves freely.

Electrical Checks

- Cable terminations tight and labeled.
- Motor rotation direction confirmed (bump start test).
- Earth continuity check.
- Overload/short-circuit protection set as per motor nameplate.

BMS/Control Checks

- All sensors installed (temperature, humidity, DP switches).
- Actuators connected and responding to BMS commands.
- Chilled water valve operation verified.
- Safety interlocks wired (door switch, drain float switch).

Functional Testing

(Start the FAHU and check operation)

Initial Start

- 1. Start supply fan at minimum speed via VFD.
- 2. Check for abnormal noise, vibration, or air leaks.
- 3. Verify motor current is within rated limits.

Airflow Measurement

- Measure CFM at supply duct using an emometer/pitot tube.
- Compare with design airflow (±10% tolerance).
- Adjust VFD speed if needed.

Filter Pressure Drop

- Record initial DP for each filter stage.
- Compare with manufacturer's clean filter values.

Coil Performance

- Measure entering & leaving air temperature (dry bulb & wet bulb).
- Measure entering & leaving chilled water temp.
- Check **\Delta T** across coil matches design.

Dampers

• Command damper fully open/close from BMS and verify physically.

Heat Recovery (if installed)

- Check wheel rotation speed and direction.
- Verify purge sector position and operation.
- Measure temp differential across heat wheel.

Performance Verification

- **Supply Air Temperature** at discharge matches setpoint (e.g., 18–20°C).
- Relative Humidity within specified range (if humidifier installed).
- Static Pressure in duct matches design.
- Noise & Vibration within allowable limits.
- **Energy Recovery Efficiency** measured (if required by spec).

4 Safety & Alarm Testing

- Simulate dirty filter → check alarm activation.
- Simulate condensate overflow → unit shuts down.
- Open access door → fan stops.
- Overload protection trips on high motor current.

5 Documentation & Handover

- Record all test results in **T&C report**.
- Submit all documents.
- Get client/consultant sign-off.

Common Mistakes on Site

During Installation

- Improper drain pan slope → stagnant water, mold growth.
- No proper U-trap or wrong trap height → air bypass, water blowback.
- Filters installed without proper sealing → air bypass reduces IAQ.
- Heat wheel purge sector wrongly positioned → contaminated exhaust mixing into fresh air.
- **Flexible duct connection missing** → vibration and noise transmitted to duct system.
- Louvers installed too close to exhaust outlets → short-circuit of air, smells re-entering system.
- **Coil connections reversed** → reduced cooling efficiency.
- No access clearance for coil pull-out or fan maintenance.

During Commissioning

- Motor rotation not checked → reverse rotation reduces airflow.
- **VFD parameters not set correctly** → overloading or wrong speed.
- BMS points mismatched → dampers/valves not responding to actual commands.
- **Testing done at no-load** → hides coil or heat recovery inefficiencies.

In Operation

- **Filters not replaced on time** → higher fan energy use, coil fouling.
- **Drain traps drying out** → odors entering supply duct.
- **Heat wheel belt loose** → no heat recovery, but motor still running.
- Chilled water valve stuck → supply air temperature drifts.
- Actuators bypassed manually → constant fresh air, wasting cooling.

FAHU Maintenance Checklist

Monthly

- Check filter differential pressure; clean or replace filters if DP exceeds limit.
- Inspect drain pan and trap for water stagnation or blockage.
- Listen for abnormal fan noise or vibration.
- Verify actuator movement for fresh air damper.
- Check condensate drain line for leaks or clogs.

Quarterly

- Wash pre-filters; replace fine filters if needed.
- Clean cooling coil fins with coil cleaner; straighten bent fins.
- Inspect fan belts (if belt-driven) for wear, tension, and alignment.
- Check all sensors (temp, humidity, DP) for correct readings.
- Lubricate fan bearings (if not sealed type).

Half-Yearly

- Inspect casing and panel seals for leakage.
- Test **BMS control response** (damper modulation, valve modulation, alarms).
- Inspect heat recovery wheel: clean surface, check belt/drive motor, verify purge sector.
- Flush and clean humidifier section (if installed) to prevent scale buildup.

Yearly

- Perform full **airflow measurement** and compare with design CFM.
- Calibrate all sensors and DP switches.
- Inspect motor and VFD for overheating, check electrical connections.
- Repaint or repair any corroded metal parts.
- Replace all gaskets/seals that show wear.

END OF THE NOTES