VAV Systems

Jeff Wotnosky

Trane Sales Engineer Raleigh, North Carolina

College Colleg

File Name - Page 1 Version: 9/00

VAV systems Agenda

- What is Variable Air Volume (VAV)
- Why(/Not) design VAV systems
- What buildings utilize VAV
- VAV system types and their components
 - Changeover Bypass (Varitrac)
 - True VAV (Varitrane)
 - Single Zone VAV
- System control considerations
- Leed and VAV
- Questions?

1

What is Variable Air Volume(VAV) ?

Characterstics of VAV systems

Constant air temperature off AC Unit

Vary the air volume as load requires

American Standard, Inc. 2000 - All Rights Reserved

Why use VAV?

- 2
- Provides multiple zones of comfort
- Life cycle cost will be less than other HVAC Systems trying to accomplish similar comfort levels
- Load diversity
 - Smaller equipment (lower AC unit first cost compared to Constant Volume)
 - Less supply air (less energy consumption)
- Able to adapt to changes in building use

Why Not ??

- *
- Higher first cost than comparable single zone
 - Controls, equipment, commissioning
- Increased maintenance cost
 - More pieces to look after
 - Terminal units might be locate

Common places to use VAV systems

Commercial/Medical Office buildings Schools (all levels) Houses of worship Conference Centers

) American Standard, Inc. 2000 - All Rights Reserved

VAV System Types

Changeover Bypass (Varitrac) "True VAV" (Varitrane) Single Zone VAV

1

File Name - Page 9 Version: 9/00

VariTrac Changeover / Bypass System

College Colleg

What is VariTrac?

- Cost Effective way to zone Standard packaged Rooftop units or Split Systems
- Often Driven by Light Commercial contractors:
 - Used to "Package Rooftop Equipment"
 - Desire somewhat simple installations and want to get on and off the job quickly.
 - Want to get a little more flexibility than their typical applications

Changeover/Bypass VAV System Layout

6/d College

Where would you use VariTrac?

- Ideal candidates for VariTrac Systems are:
 - one-story office buildings, clinics, movie theaters, strip malls, light manufacturing centers.
 - Examples are offices within a church, school, or manufacturing facility seeking individual (zoned) temperature control.

Light Commerical RTU

Light Commercial Split System

VariTrac Changeover Bypass System

VariTrac Dampers

- Cooling only standard
- Trane Controller
 - Factory-installed, downloaded, and tested controller
 - Remote reheat control
- Round or Rectangular
- Airside
 - Pressure Dependent System (damper position control- no direct CFM measurement)
 - Up to 1.75" system pressure

Central Control Panel

- "Self-Configuring"
 - High Quality Installation
 - Repeatable Performance
- Up to 24 Zones
- Optional touch screen user interface
- PC-Free Setup for basic functions
- Simple PC interface with Windows[™] based software
- Interfaces with Main AHU via 2H/2C Control
- Scheduling
 - 2 Start/Stop Times
 - Schedule 4 Groups of Zones

How is changeover achieved?

Voting

- CCP polls UCM's
- On a minimum calls for changeover the CCP will disable heat or cool and enable heat or cool
- CCP then communicates to UCM's new control mode and UCM's control to different setpoints

eld College

True Variable-Air-Volume System

VAV Terminal Units

Fan-powered VAV terminal unit

Dual-duct VAV terminal unit

1

File Name - Page 22 Version: 9/00

• Single duct

- Cooling only
- No auxiliary heat

- Single Duct w/hot water reheat
 - Hot Water Coils
 - 1 & 2 row coils
 - Built in access panel for cleaning

VCEF

- Single duct w/electric reheat
 - 8 different voltages
 - Up to 3 stages of heat
 - Interlocking door disconnect
 - Heater line fuse
 - Magnetic or mercury contactors
 - Element removal through control enclosure

Terminal Reheat System

Fan-Powered VAV

Parallel, Fan-Powered

Parallel Fan-Powered VAV

Series, Fan-Powered

(Electrically Commutated Motors – ECM's)

Parallel vs. Series

Intermittent fan

- Fan only runs in the heat mode (Variable Volume to the space)
- Fan is the first stage of heat
- Fan CFM < Max Cooling
- Most energy efficient design
- Sound in space will vary

<u>Continuous fan</u>

- Fan runs continuously in the occupied mode (constant volume to the space)
- Fan CFM = Max Cooling
- Less energy efficient system design
- Smaller main supply fan?
- ECM Motors
- Sound remains same

fan-powered VAV Series Versus Parallel

6/d College

Fan Powered Units: Cooling Only

- Plenum Air provides "free" reheat from lights, etc.
 - Parallel units (only when fan energized)
 - Series (increases as air valve closes)

Fan Powered Units: Cooling with Hot Water Reheat

Model VPWF/LPWF (Parallel)

 Reheat coil mounted on plenum inlet (optional discharge)

Model VSWF, LSWF (Series)

- Reheat coil mounted on discharge
- Coil Offerings
 - 1 Row
 - 2 Row

Fan Powered Units: Cooling with Electric Reheat

- Model VPEF / LPEF(Parallel)
 - Discharge mounted
 - UL listed

- Model VSEF/ LSEF (Series)
 - Discharge mounted
 - UL listed

Fan Powered Units: Electric Heater Options

- 8 different voltages
- 2 stages of heat (plus the fan as stage 1)
- Interlocking door disconnect
- Heater line fuse
- Air flow switch
- Magnetic or mercury contactors

Differences between VariTrac and VariTrane

VariTrac

- Used in Smaller buildings seeking cost-effective zone control
- Simpler System Control
- Less expensive than VariTrane
- Smaller Constant Volume AHU/RTU (Typically 15 tons or less)
- Up to 24 zones
- Pressure Dependent
- VariTrane
 - Used in Larger Buildings seeking ideal occupant comfort
 - Very Flexible System Control (more complex sequences)
 - Larger Variable Volume AHU/RTU equipment (up to 130 Tons)
 - Up to 120+ zones
 - 30% fan energy savings over CV
 - Pressure Independent

VAV System Types

Single Zone VAV

© American Standard, Inc. 2000 - All Rights Reserved

Single Zone VAV

AHU is your VAV Box !!

© American Standard, Inc. 2000 - All Rights Reserved

Application for Single Zone VAV

Large areas (conference rooms, assembly halls...)

Control air flow off room sensor

Controls

Unit controls

System controls

Unit Controls

- Pneumatic Controls about 5% (PN**)
- No- controls- field installation of others controllersabout 5% (ENON)
- Factory Installation of others Controls- about 20% (FM0*)
- DDC Controls around 70% (DD**)
 - Trane DDC (Communicates to a Trane-Trane System)
 - Trane LonTalk DDC (designed to talk a language which is not proprietary to Trane)

VAV systems Optimized System Controls

- Optimal start
- Optimal stop
- Fan-pressure optimization
- Supply-air-temperature reset
- Ventilation optimization

Optimal Start

Optimal Stop

Fan-Pressure Optimization

fan-pressure optimization Part-Load Energy Savings

static pressure

airflow

ASHRAE Standard 62.1-2004 Dynamic Reset of OA

- May reset OA intake flow (or zone OA flow) in response to:
 - Variations in zone population (demand-controlled ventilation, or DCV)
 - Variations in ventilation efficiency due to changes in airflow (ventilation reset)

ventilation optimization Zone Level: DCV

ventilation optimization System Level: Ventilation Reset

rooftop VAV system HVAC Energy Savings

Trane Control Systems Architecture

Centralized alarming, diagnostics, trending

old College

- Centralized alarming, diagnostics, trending
 - Building operations, energy management, commissioning, validation

- Centralized alarming, diagnostics, trending
- Facility management services

Periodic commissioning and calibration VAV Air System (Comm5)

VAV Commissioning Report

old Colleg

C

- Centralized alarming, diagnostics, trending
- Facility management services
- Periodic commissioning and calibration
- Wireless zone sensors for flexibility

- EA credit 1: Optimize Energy Performance
 - EQ credit 1: Outdoor-Air Delivery Monitoring
- TRACE 700 (90.1-2004, App G)
 - Ventilation optimization in Tracer Summit
 - CO₂ sensors only in densely-occupied zones
 - Traq dampers in IntelliPak rooftop unit

Summary

- What is Variable Air Volume (VAV)
- Why(/Not) design VAV systems
- What buildings utilize VAV
- VAV system types and their components
 - Changeover Bypass (Varitrac)
 - True VAV (Varitrane)
 - Single Zone VAV
- System control considerations
- Leed and VAV

5

QUESTIONS ??

Comerican Standard, Inc. 2000 - All Rights Reserved

File Name - Page 61 Version: 9/00

THANK YOU

- Jeff Wotnosky Trane Company
- 919-781-0458

College Colleg