

HVAC Right-Sizing Part 1: Calculating Loads

Thursday, April 28 11:00 a.m. - 12:00 p.m. Eastern

Presented by: Mike Gestwick - National Renewable Energy Laboratory

> Arlan Burdick, Anthony Grisolia – IBACOS, a Building America Research Team

Energy Efficiency & Renewable Energy

 Building America: Introduction

 April 28, 2011

Mike Gestwick michael.gestwick@nrel.gov

- Reduce energy use in new and existing residential buildings
- Promote building science and systems engineering / integration approach
- "Do no harm": Ensure safety, health and durability are maintained or improved
- Accelerate adoption of high performance technologies
 www.buildingamerica.gov

15 Industry Research Teams

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Alliance for Residential Building Innovation (ARBI)

NorthernSTAR Building America Partnership

Building America Retrofit Alliance (BARA)

Building Energy Efficient Homes for America (BeeHa)

Fraunhofer

The Partnership for Advanced Residential Retrofit Building Solutions Habitat Cost Effective Energy Retrofit Program

)OV

About Our Speakers

- Building Performance Specialist
- Bachelors in Mechanical Engineering Technology
- LEED[®] Accredited Professional
- Formerly worked for a large-scale production homebuilding company

- IBACOS Services Manager
- Helps builders create construction standards
- Evaluates construction quality and comfort issues
- Performs quality assessments

About Today's Session

The BIG PICTURE – Why Care?

3 Key Factors for Calculating Loads

3 Internal Loads (5 min.)

What Happens When You "Fudge" the Numbers?

Q&A: How to Participate

HVAC Right-Sizing Part 1: Calculating Loads

Welcome to the Webinar! We will start at 11:00 AM Eastern Time

Be sure that you are also dialed into the telephone conference call:

Dial-in number: 800-857-960; ; Pass code: 849250

(If asked for a PIN #, press *0)

Webinar Poll

The BIG Picture

brought to you by:

What is HVAC supposed to do?

- Keep the occupants of a home more comfortable by
 - Adjusting internal temperatures
 - Mixing air in rooms
 - Maintaining humidity levels
- Operate unnoticed
- Be energy efficient

Market Demand

- New construction 15% less energy each code cycle
- Existing homes Homeowners updating with insulation, windows and more

Residential State Energy Code Status AS OF JANUARY 1, 2011

Simplistic Design Approach

Instructions

- 1. Print this page.
- 2. Carefully cut out the holes.
- Stand on curb across the street and hold page 1 foot from your face.
- 4. Find the hole that's the closest match.
- 5. Size HVAC accordingly

HVAC Sizing Chart

1 1/2 TO 2 TON

2 1/2 TO 3 1/2 TON

Just to be safe...

How many fingers do you put on the scale?

ACCA says NONE. Experience bears this out.

Why is right-sizing so important?

Alliance

Enclosures are Improving Rules of Thumb Haven't

- Rooms have much lower loads
- More moisture is retained
- Less infiltration or "natural ventilation"

Best Practice for Right-Sizing HVAC

Iterative Process

- 1. Load calculations
- 2. Equipment selection and sizing
- 3. Duct and register sizing

What Is the Load?

- The measure of energy the HVAC system needs to add or remove from a space to provide the desired level of comfort
 - Btu/h
- Not the size of the HVAC system
 - First piece of information needed
 - 12,000 Btu/h = 1 Ton Cooling
- Can be highly variable

Heating Loads

- Losses to the outside environment
- No credit is taken for solar gains or internal loads because the peak heat loss occurs at night during periods of occupant inactivity

Cooling Loads

- Gains from the outside environment
- Solar Gains
- Internal Gains
- Sensible and Latent Components

How to Approach Manual J

- Designer should
 - Walk a house in production
 - Look at plans
 - Ask for all specifications
- Builder doesn't have the info? Get the homes tested!
 - Duct leakage
 - Air tightness

Importance of Getting It Right

HVAC Design Impacts

- 1st construction costs
- Comfort
- Indoor air quality
- Building durability
- Energy efficiency
- Higher customer satisfaction/ lower call backs

Alliance

Key Factor #1: Design Considerations

brought to you by:

- Location of the House
- Size of the House
- Indoor Design Conditions

Location of the House

- Latitude
- Elevation
- Outdoor temperature and relative humidity

Location	Elevation	Latitude	Winter	Summer					
	Feet	Degrees North	Heating 1% Dry Bulb	Cooling 1% Dry Bulb	Coincident Wet Bulb	Design Grains 55% RH	Design Grains 50% RH	Design Grains 45% RH	Daily Range (DR)
Florida									
Apalachicola	20	29	35	90	78	57	64	70	м
Belle Glade	17	26	44	91	76	42	49	55	М
Cape Kennedy AP	10	28	42	90	78	57	64	70	L
Daytona Beach AP	31	29	37	90	77	51	58	64	L
Fort Lauderdale	10	26	50	90	78	57	64	70	L
Fort Myers AP	15	26	47	93	77	46	53	59	М
Fort Pierce	25	27	42	90	78	57	64	70	М
Gainsville AP	152	29	33	92	77	47	54	60	М
Homestead, AFB	7	25	52	90	76	57	64	70	L
Jacksonville AP	26	30	32	93	77	46	53	59	М
Jacksonville/Cecil Field NAS	80	30	34	95	76	35	43	49	М
Jacksonville, Mayport Naval	16	30	39	92	78	54	61	67	М
Key West AP	4	24	58	89	79	66	73	79	L
Lakeland CO	214	28	41	91	76	42	49	55	М
Melbourne	15	28	43	91	79	62	69	75	М
Miami AP	11	25	50	90	77	51	58	64	L
Miami Beach CO	8	25	48	89	77	52	59	65	L
Miami, New Tamiami AP	10	25	49	91	78	56	59	65	L
Milton, Whiting Field NAS	200	30	31	93	77	46	53	59	М
Ocala	90	29	34	93	77	46	53	59	М
Orlando AP	100	28	42	93	76	39	46	52	М
Panama City, Tyndall AFB	18	30	37	89	79	66	73	79	L
Pensacola CO	30	30	32	92	78	54	61	67	L

Outdoor Design Conditions for the United States

Source: ACCA Manual J Version 8, Table 1A

Location of the House

Orientation

The orientation of the house must be considered in the cooling load calculation due to changing solar heat gains at various times of the day.

Location of the House

Size of the House

- Square footage
- Volume
- Number of bedrooms

Indoor Design Conditions

- Indoor temperature
- Relative
 humidity

Heating Season = 70 F, 30% RH

Fudge Factor #1

What happens when you fudge heating and cooling set points?

Chicago Outdoor/Indoor Design Conditions

Baseline	Manipulated	
Outdoor Design Conditions 89°F _{db} 73°F _{wb} Temp Cooling 2°F Temp Heating	Outdoor Design Conditions 97°F _{db} 78°F _{wb} Temp Cooling -11°F Temp Heating	
Indoor Design Conditions 75°F Temp 50% RH Cooling 70°F Temp 30% RH Heating	Indoor Design Conditions 70°F Temp 30% RH Cooling 75°F Temp 50% RH Heating	000

Table 3 Chicago Manipulated Outdoor/Indoor Design Conditions

Fudge Factor #1

Fudging set points = 10,400 Btu/h additional cooling load, potentially over-sizing the cooling system by 1 ton

Results - Chicago Manipulated Outdoor/Indoor Design Conditions

Loads

Webinar Poll

Questions?

Key Factor #2: Thermal Enclosure

brought to you by:

Evolution with Code Changes

IB-ACOS Alliance

Enclosure:

Key Factors to Consider

- Insulation values
- Window specification
- Air tightness
- External and internal shading

Enclosure:

Insulation Values

- Walls
- Ceilings
- Floors

Enclosure:

(B)

Windows

U-Factor measures how well a product prevents heat from escaping a home or building. U-Factor ratings generally fall between 0.20 and 1.20. The lower the U-Factor, the better a product is at keeping heat in. U-Factor is particularly important during the winter heating season. This label displays U-Factor in U.S. units. Labels on products sold in markets outside the United States may display U-Factor in metric units.

Solar Heat Gain Coefficient (SHGC) measures how well a product blocks heat from the sun. SHGC is expressed as a number between 0 and 1. The lower the SHGC, the better a product is at blocking unwanted heat gain. Blocking solar heat gain is particularly important during the summer cooling season.

Visible Transmittance (VT) measures how much light comes through a product. VT is expressed as a number between 0 and 1. The higher the VT, the higher the potential for daylighting.

Air Leakage (AL) measures how much outside air comes into a home or building through a product. AL rates typically fall in a range between 0.1 and 0.3. The lower the AL, the better a product is at keeping air out. AL is an optional rating, and manufacturers can choose not to include it on their labels. This label displays AL in U.S. units. Labels on products sold in markets outside the United States may display AL in metric units.

Condensation Resistance (CR) measures how well a product resists the formation of condensation. CR is expressed as a number between 1 and 100. The higher the number, the better a product is able to resist condensation. CR is an optional rating, and manufacturers can choose not to include it on their NFRC labels.

www.nfrc.org

Windows

- Orientation
- Size
- Thermal conductivity
- Solar Heat Gain Coefficient (SHGC)

Windows

Impact of Window Specification on Peak Cooling Load

- U= 0.35 SHGC= 0.30 versus U= 0.28 SHGC = 0.26
- When buildings are well insulated and air sealed windows are more critical

Alliance

Home Quality + Performance

Air Tightness

The target ventilation and infiltration rate must be accurately represented in the data input

In humid climates, the impact on the latent cooling load can be significant.

Air Tightness

Blower Door is a Critical Tool

HVAC contractors need proof

Internal and External Shading

Questions?

Key Factor #3: Internal Loads

brought to you by:

Internal Loads

- # of occupants
- Electronics
- Lighting
- Appliances

Internal Loads

- System location
- Ductwork
 - Location
 - Insulation value
 - Leakage

What Happens When You "Fudge" the Numbers?

Intentional or accidental manipulation of the design parameters can lead to large variations in the load

Case Study: Examples of Numbers Gone Wrong

- Two Climate Zones
 - CZ2 Orlando FL
 - CZ5 Chicago IL
- Two Houses
 - 2223 ft² slab-on-grade
 - 2223 ft² on full basement
- Multiple runs through WrightSoft with common errors/safety factors
 - Altered outdoor/indoor design conditions
 - De-rated insulation, window performance, shading characteristics
 - Exaggerated infiltration and ventilation
 - Combined all safety factors for a grossly exaggerated load

Fudge Factor #1 – Design Conditions

Baseline	Manipulated
Outdoor Design Conditions	Outdoor Design Conditions
93°Fdb 76°Fwb Temp Cooling	96°Fdb 79°Fwb Temp Cooling
42°F Temp Heating	30°F Heating
Indoor Design Conditions	Indoor Design Conditions
75°F Temp 50%RH Cooling	70°F Temp 30% RH Cooling
70°F Temp 30% RH Heating	75°F Temp 50%RH Heating

Results - Orlando Manipulated Outdoor/Indoor Design Conditions

	Baseline Load	Manipulated Load	Change In Load Btu/h	Change In Load %
Heating Load	23,600 Btu/h	37,800 Btu/h	14,100 Btu/h	60 %
Sensible Cooling	16,600 Btu/h	22,900 Btu/h	6,300 Btu/h	38 %
Latent Cooing	4,100 Btu/h	7,100 Btu/h	3,000 Btu/h	73 %
Total Cooling	20,700 Btu/h	30,100 Btu/h	9,400 Btu/h	45 %

Fudge Factor #2 – Manipulating Thermal Enclosure Design

Chicago Building Component Manipulations			
Baseline	Manipulated		
Windows U = 0.35, SHGC = 0.5 Walls R19 Attic R38 Full credit for eaves, 50% exterior bug screens, light colored blinds at 45 degrees closed	Windows U = 0.45 SHGC = 0.5 Walls R17 Attic R30 No credit for eaves, no bug screens, no blinds		

Results - Chicago Building Component Manipulations

	Baseline Load	Manipulated Load	Change In Load Btu/h	Change In Load %
Heating Load	41,700 Btu/h	46,300 Btu/h	4,600 Btu/h	11%
Sensible Cooling	17,400 Btu/h	22,400 Btu/h	5,000 Btu/h	28 %
Latent Cooing	3,200 Btu/h	3,200 Btu/h	0 Btu/h	0 %
Total Cooling	20,600 Btu/h	25,700 Btu/h	5,100 Btu/h	24 %

Fudge Factor #2 – Manipulating Thermal Enclosure Design

Fudge Factor #3 – Ductwork Conditions

Orlando Ductwork Conditions Manipulations

Baseline	Manipulated	
Tightness level Supply = 0.06 cfm/ft ²	Tightness level Supply = 0.12 cfm/ft ²	
Tightness level Return = 0.06 cfm/ft ²	Tightness level Return = 0.24cfm/ft ²	
Insulation = R8	Insulation = R6	

Fudge Factor #3 – Ductwork Conditions

Fudge Factor #4 – Ventilation / Air Infiltration

Baseline	Manipulated
Heating season infiltration = 0.19 ACHn (5.04	Heating season infiltration = 0.43 ACHn
ACH50)	(11.39 ACH50)
Cooling season infiltration = 0.10 ACHn (2.65	Cooling season infiltration = 0.23 ACHn
ACH50)	(6.09 ACH50)
Ventilation balanced 60 cfm to meet ASHRAE	Ventilation exhaust only 100 cfm
standard 62.2 without energy or heat recovery	

Fudge Factor #4 – Ventilation / Air Infiltration

Combined "Safety Factors" - Chicago

	Baseline Load	Manipulated Load	Change In Load Btu/h	Change In Load %
Heating Load	41,700 Btu/h	64,700 Btu/h	23,000 Btu/h	55 %
Sensible Cooling	17,400 Btu/h	31,600 Btu/h	14,200 Btu/h	82 %
Latent Cooing	3,200 Btu/h	9,100 Btu/h	5,900 Btu/h	184 %
Total Cooling	20,600 Btu/h	40,600 Btu/h	20,000 Btu/h	97 %

Combined "Safety Factors" - Orlando

	Baseline Load	Manipulated Load	Change In Load Btu/h	Change In Load %
Heating Load	23,600 Btu/h	57,200 Btu/h	33,600 Btu/h	142 %
Sensible Cooling	16,600 Btu/h	40,200 Btu/h	23,600 Btu/h	142 %
Latent Cooing	4,100 Btu/h	13,900 Btu/h	9,800 Btu/h	239%
Total Cooling	20,700 Btu/h	54,000 Btu/h	33,300 Btu/h	161 %

Questions?

brought to you by:

- IBACOS Building America "Guide to Heating and Cooling Load Calculations for High Performance Homes"
- Air Conditioning Contractors of America Manual J Residential Load Calculation Eighth Edition

Big Picture:

We Just Covered Step 1 of 3

Iterative Process

- 1. Load calculations
- 2. Equipment selection and sizing
- 3. Duct and register sizing

Builder Members

Beazer Homes Charter Homes Cobblestone Homes Darling Homes Dominion Homes Doucette Communities DSLD Homes e-co lab EQA Communities Harvard Communities Highland Homes

History Maker Homes Hubbell Homes Imagine Homes Insight Homes K. Hovnanian KB Home Keystone Custom Homes Landmark Renovation Meritage Homes Mistick Construction Orleans Homes

Supported by:

Pine Mountain Builders Pulte Homes Richmond American S&A Homes Shea Homes Studio26 homes Tindall Homes Veridian Homes Wathen-Castanos Wayne Homes Winchester Homes

Thank you for joining us!

More Questions?

Arlan Burdick

Building Performance Specialist 406-548-7472 aburdick@ibacos.com

Anthony Grisolia

Services Manager 412-915-4061 agrisolia@ibacos.com

Interested in Innovation? Join the

Thank you for attending the webinar

If you have any comments or ideas for future webinars, please email webmasterbtp@nrel.gov

Visit www.buildings.energy.gov/webinars.html to download

today's presentation and to register for announcements of upcoming webinars.